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In this lab, you will be composing the multiplier, processor, and cache you have designed through-
out the semester to implement a single-core system with its own instruction and data cache. You
will also implement a simple ring network and compose the multiplier, processor, cache, and net-
work to implement a simple multicore system with private instruction caches and a shared, banked
data cache. In addition to unit testing, you will be using integration testing to verify various incre-
mental compositions: (1) the ring network with special adapters to build memory networks suitable
for sending memory requests and receiving memory responses; (2) the memory networks and the
cache to build a shared, banked data cache; and (3) the entire single-core and multi-core systems.
Your baseline design will be a combination of the single-core system hardware and single-core sys-
tem software in the form of a single-threaded sorting microbenchmark. Your alternative design will
be a combination of the multi-core system hardware and multi-core system software in the form of
a multi-threaded sorting microbenchmark. You will be using a standard RISC-V cross-compiler to
compile C programs down to a RISC-V binary suitable for execution on our RISC-V simulators. You
are free to choose any single-threaded or multi-threaded sorting algorithm you like. You are required
to implement the baseline and alternative designs, verify the designs using an effective testing strat-
egy, and perform an evaluation comparing the two implementations. Advanced students will have
an opportunity to improve the performance of their sorting microbenchmarks through either hard-
ware or software improvements. The milestone for this lab is to complete the baseline design and
corresponding single-threaded sorting microbenchmark. You should consult the course lab logis-
tics document for more information about the expectations for all lab assignments and how they
will be assessed.

This lab is designed to give you experience with:

• composition of simpler subsystems to create more complex systems;
• programming single- and multi-threaded C programs;
• interaction between hardware and software design;
• design principles including modularity, hierarchy, encapsulation, and regularity;
• design patterns including latency insensitive message interfaces;
• agile design methodologies including incremental development and test-driven development;
• computer architecture evaluation methodologies based on architecture-level statistics;

This handout assumes that you have read and understand the course tutorials. To get started, login
to an ecelinux server, source the setup script, and clone your lab group’s remote repository from
GitHub:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:cornell-ece4750/lab-groupXX

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
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already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the hardware and software tests in the lab
like this:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase

% mkdir -p sim/build
% cd sim/build
% pytest ../lab4_sys

% mkdir -p app/build-native
% cd app/build-native
% ../configure
% make check

% mkdir -p app/build
% cd app/build
% ../configure --host=riscv64-linux-gnu
% make check

Some of the tests will pass but many will fail since you have not implemented the single-core compo-
sition, the ring network, nor the sorting algorithms. For this lab, you will be working in the lab4_sys
subproject which includes the following files (note many of the Verilog RTL files also include corre-
sponding Python wrappers that are not listed here):

• SingleCoreSysFL.py – FL single-core system
• SingleCoreSys.v – Verilog RTL for single-core system

• NetMsg.py – Network message/packet type
• NetRouterRouteUnit.v – Verilog RTL for route unit
• NetRouterSwitchUnit.v – Verilog RTL for switch unit
• NetRouter.v – Verilog RTL for network router
• Net.v – Verilog RTL for ring network

• MsgAdapters.v – Verilog RTL adapters to convert MemMsg/NetMsg
• CacheNet.v – Verilog RTL for cache req/resp network
• MemNet.v – Verilog RTL for memory req/resp network
• MultiCoreDataCache.v – Verilog RTL for multi-core banked data cache
• MultiCoreSys.v – Verilog RTL for multi-core system
• sys-sim – System simulator
• __init__.py – Package setup

• test/harness.py – Test harness
• test/simple_score_test.py – Very simple test for single-core sys
• test/simple_mcore_test.py – Very simple test for multi-core sys

• test/SingleCoreSysFL_test.py – Single-core system FL tests
• test/SingleCoreSys_test.py – Single-core system tests

• test/NetRouterRouteUnit_test.py – Network route unit tests
• test/NetRouterSwitchUnit_test.py – Network switch unit tests
• test/NetRouter_test.py – Network router unit tests
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• test/Net_test.py – Network tests

• test/CacheNet_test.py – Cache req/resp network tests
• test/MemNet_test.py – Memory req/resp network tests
• test/MultiCoreDataCache_test.py – Multi-core banked data cache tests

• test/MultiCoreSysFL_test.py – Multi-core system FL tests
• test/MultiCoreSys_test.py – Multi-core system tests
• test/mem_sim_test.py – System simulator test
• test/__init__.py – Package setup

You will also be developing software in the app subdirectory which includes the following files:

• aclocal.m4 – Configuration file used in C build system
• config.h.in – Configuration file used in C build system
• configure – Configuration file used in C build system
• configure.ac – Configuration file used in C build system
• Makefile.in – Makefile template used in C build system

• scripts/tinyrv2.ld – TinyRV2 linker script

• ece4750/crt0.S – TinyRV2 startup assembly code
• ece4750/ece4750.ac – Configuration file used in C build system
• ece4750/ece4750.mk.in – Configuration file used in C build system
• ece4750/ece4750-misc.h – Standard lib miscellaneous header
• ece4750/ece4750-misc.c – Standard lib miscellaneous source
• ece4750/ece4750-wprint.h – Standard lib for printing header
• ece4750/ece4750-wprint.c – Standard lib for printing source
• ece4750/ece4750-check.h – Standard lib for unit testing header
• ece4750/ece4750-check.c – Standard lib for unit testing source
• ece4750/ece4750-check-test.c – Standard lib for unit testing unit tests
• ece4750/ece4750-malloc.h – Standard lib for malloc/free header
• ece4750/ece4750-malloc.c – Standard lib for malloc/free source
• ece4750/ece4750-malloc-test.c – Standard lib for malloc/free unit tests
• ece4750/ece4750-bthread.h – Standard lib for threading header
• ece4750/ece4750-bthread.c – Standard lib for threading source
• ece4750/ece4750-bthread-test.c – Standard lib for threading unit tests
• ece4750/ece4750.h – Standard lib top-level header

• ubmark/ubmark.ac – Configuration file used in C build system
• ubmark/ubmark.mk.in – Configuration file used in C build system
• ubmark/ubmark-<ubmark>.h – Header for single-threaded ubmark
• ubmark/ubmark-<ubmark>.c – Source for single-threaded ubmark
• ubmark/ubmark-<ubmark>.dat – Data file for single-threaded ubmark evaluation
• ubmark/ubmark-<ubmark>-test.c – Unit tests for single-threaded ubmark
• ubmark/ubmark-<ubmark>-eval.c – Evaluation program for single-threaded ubmark

• mtbmark/mtbmark.ac – Configuration file used in C build system
• mtbmark/mtbmark.mk.in – Configuration file used in C build system
• mtbmark/mtbmark-<mtbmark>.h – Header for multi-threaded ubmark
• mtbmark/mtbmark-<mtbmark>.c – Source for multi-threaded ubmark
• mtbmark/mtbmark-<mtbmark>.dat – Data file for multi-threaded ubmark evaluation
• mtbmark/mtbmark-<mtbmark>-test.c – Unit tests for multi-threaded ubmark
• mtbmark/mtbmark-<mtbmark>-eval.c – Evaluation program for multi-threaded ubmark
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Note that this lab makes use of your solution from the first three labs. If you did not complete one
or more of these labs, you can ask to use the instructor’s solution, but this will result in a modest
penalty to your code functionality score. Feel free to discuss this with the instructor to decide what
is best for your group.

1. Introduction

Ever since transistor scaling has stopped delivering exponential growth in performance within sim-
ilar area and power constraints, computer architects have tried different ways to scale the processor
performance, beyond simply exploiting more instruction-level parallelism (ILP). Two promising ap-
proaches have been to exploit data-level parallelism (DLP) and/or thread-level parallelism (TLP).
Multicore processors (a.k.a., chip multiprocessors) exploit TLP by allocating different threads within
a single program to the different cores within the chip. Ideally, fully parallelizing an application on
P processors leads to about P× speedup.

However, multicore designs also have their drawbacks. First of all, it is not possible to fully par-
allelize most applications, and serial portions of the code can quickly dominate the execution time.
In this course we are using a simplified multicore system to ensure correct execution, but a realistic
multicore system must manage coherence, consistency, and synchronization. Finally, the multicore
design definitely has higher hardware complexity and more hardware overall. In this lab, you will
get the chance to explore some of these trade offs using a single-core system with its own instruction
and data cache, and a multi-core system with four cores each with private instruction caches and a
shared, banked data cache.

We provide functional-level models of both the single-core and multi-core systems to enable veri-
fying your tests before applying them to your RTL implementations. You can reuse assembly tests
for just a representative subset of instructions (since the simulation time is increased due to more
complex models) to test the single-core system. To test the multi-core composition, we introduce an
extension to our assembly test methodology that enables initializing multiple test sources and sinks
(one per core). In the spirit of incremental design, we will work with these sub-compositions first:
a cache network, a memory network, and the multi-core data cache before testing the multi-core
system.

Unlike previous labs, this lab has significant portion of software design. We organize files as follows:
sim contains Verilog RTL designs and unit tests; and app is the microbenchmark directory you will
be working in for the software side of this lab. We will be using a standard RISC-V cross-compiler
which compiles C programs to the full RISC-V ISA and a modular C++ build system to simplify
running the compiler.

2. Baseline Design

The baseline design will include both the single-core system hardware and the single-core system
software to create a complete single-core system capable of sorting arrays of integers.

2.1. Single-Core System Hardware

The single-core system hardware will compose the processor from Lab 2 (which includes the mul-
tiplier from Lab 1) and two instances of the cache from Lab 3 (one as the instruction cache, and the
other as the data cache). The composition and the connections for the single-core system are shown
Figure 1. The cache request and response ports of the caches connect to the respective i/dcache ports
of the processor, while the memory request and response ports connect to outside facing i/dmemreq
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Figure 1: SingleCore – The SingleCore module as a whole, is hooked up to the test source, test sink,
and test memory for testing and evaluation. Each bundle of the three arrows is a msg/val/rdy port
bundle. The ports with inclined names are the top-level ports that SingleCore expose.

and i/dmemresp ports as shown. Note that the data bitwidth from the processor to caches is one
word (i.e., 32 bits), while the data bitwidth from the caches to main memory is the full cache line
(i.e., 128 bits). Note that you should make sure to set the core_id for the processor to zero and the
number of banks for both the instruction and data cache to one. You will implement the single-core
composition in SingleCoreSys.v.

2.2. Single-Core System Software

The single-core system software will be a single-threaded sorting algorithm which should be imple-
mented in C. You can use any algorithm you like, although keep in mind that your goal is to make a
fast sorting algorithm. You are welcome to consult textbooks or online resources to learn more about
sorting algorithms, but you should cite these resources. Copying code is not allowed; you should
write it on your own. You will implement the sorting algorithm in app/ubmark/ubmark-sort.c. You
cannot change the interface to the ubmark_sort function!

3. Alternative Design

The alternative design will include both the multi-core system hardware and the multi-core system
software to create a completely multi-core system capable of using parallel execution to sort an array
of integers.

3.1. Multi-Core System Hardware

The multi-core system hardware will compose four instances of the processor from Lab 2 (which in-
cludes the multiplier from Lab 1) and eight instances of the cache from Lab 3 (four instruction caches
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and four data caches). You will implement a new ring network which will be used to interconnect
the processors to the data caches and to interconnect the caches to the main memory interfaces.

The ring network is shown in Figure 3. The network has four input stream interfaces (also called
input terminals) and four output stream interfaces (also called output terminals). Figure 4 shows the
network message format which includes a two-bit source field, two-bit destination field, eight-bit
opaque field, and payload. The network is implemented using four network routers each with three
input stream interfaces and three output stream interfaces. Network messages are injected into the
network on one of four input terminals as indicated by the source field, then traverse the routers in
the ring, and eventually are ejected on one of four output terminals as indicated by the destination
field. The network router is implemented using three four-entry normal input queues, three route
units, and three switch units as shown in Figure 5. The route units implement the routing algorithm
by using the network message’s destination field and the router id to decide which switch unit to
send the network message. The switch unit implements the arbitration algorithm which determines
which message can go out the corresponding output port.

Start by implementing the route unit in NetRouterRouteUnit.v and the switch unit in NetRouterSwitchUnit.v.
An initial route unit might use a simple routing algorithm which always routes all network message
clockwise around the ring network. A more optimized routing algorithm might choose the short-
est path to the desired output terminal. An initial switch unit might use fixed priority arbitration
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Figure 2: Alternative design block diagram – The
alternative design consists of four processors, four private
I-caches, a four-banked shared D-cache, and several
networks to route dmem request/response from the
processors and the D-cache, and refilling both the I-cache
and the D-cache. Note that each network shown in the
diagram is actually two networks: one for request and the
other for response.
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Figure 3: Ring Network – Ring network has four input streams (terminals) and four output streams
(terminals) and is implemented using four routers. All arrows are stream interfaces with correspond-
ing msg, val, rdy ports.
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Figure 4: Network Message Format – Network messages are sent from a network input terminal to
a network output terminal. Example message is shown with a payload of 32 bits.
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Figure 5: Ring Network Router – Ring network router has three input streams and three output
streams and is implemented using three input queues, three route units, and three switch units. All
arrows are stream interfaces with corresponding msg, val, rdy ports.

by always giving priority to messages in the ring network over new messages arriving from an in-
put terminal. A more optimized arbitration algorithm might use oblivious rotational arbitration or
round-robin arbitration to make a fairer decision. Once you have implemented the route unit and
switch unit, compose them with three normal queues to implement the network router. Once you
have implemented the network router, you can compose four routers to create the complete ring
network as shown in Figure 3.

Once you have the ring network implemented and thoroughly tested it, we can now put together the
complete multi-core system as shown in Figure 2. We will take an incremental design approach to
build the whole system. Note that we have provided you with the following sub-compositions
with unit tests!

• Cache Network: the request/response network pair for interconnecting four processors and four
cache banks

• Memory Network: the request/response network pair for interconnecting four caches and one
main memory port

• Multi-Core Data Cache: the cache network, four cache banks, and the memory network

Figure 6 shows the diagram of the cache network that we are going to use to interconnect the four
processors and the four data cache banks. You can see from the diagram that we instantiate two net-
works (a request network and a response network). There are several important adapters to convert
between memory messages and network messages at each network terminal. "U" corresponds to
an upstream adapaters and the "D" corresponds to a downstream adapters. The upstream adapters
convert from cache requests to network messages, and the downstream adapters covert network
messages back into the corresponding cache request. The upstream adapters look at the bank bits
in the address (see Figure 7) in the cache request to determine the appropriate destination output
terminal for the request network. The upstream adapters also set the source field in the network
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Figure 6: Cache Network – The cache network as a whole, is hooked up to the test sources, test sinks,
and a mock up for unit testing. Each arrow is actually a msg/val/rdy port bundle whose direction
is the msg/val direction. Each "U" and "D" is an adapter pair that takes care of both the request port
and the response ports.
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Figure 7: Memory Address Formats With Banking – Addresses for the data cache include two bank
bits which are used to choose which bank to send the memory request; in other words, the bank
bits are used as the destination field when converting a memory request message into a network
message.

message appropriately. The downstream adapters will store these source and destination fields in
the opaque field of the cache request. Eventually, the cache response will come back from the cache
and the downstream adapters also convert cache responses into network messages, and the upstream
adapters convert network messages back into the corresopnding cache response. The downstream
adapters look at the opaque field in the cache response to determine the appropriate destination
output terminal for the response network. The downstream adapters also set the source field in the
network message appropriately.

Unlike the cache network, the memory network only uses one output terminal, but has four input
terminals (see Figure 8). In the memory network, the upstream adapters always inserts zero as the
destination output terminal. The rest of the network is identical to the cache network except of course
the messages are much wider since this network is to handle cache refills and evictions.

We compose the cache network, memory network, and four cache banks to create the complete
shared, banked data-cache subsystem. We set p_num_banks=4 for each data cache to ensure they
correctly handle the bank bits. Figure 9 shows the diagram of multi-ore data cache.

Finally, we can compose the cache network, processors, and the multi-core data cache to create the
complete multi-core system shown in Figure 10. We instantiate four processors with p_num_cores=4
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Figure 8: Memory Network – The memory network as a whole, is hooked up to the test sources,
test sinks, and a mock up for unit testing. Each arrow is actually a msg/val/rdy port bundle whose
direction is the msg/val direction. Each "U" and "D" is an adapter pair that takes care of both the
request port and the response port.

and connect 0, 1, 2, 3 respectively to the core_id port of each processor. We must make sure
p_num_banks=0 for each of the instruction cache since they are private caches and not banked.

3.2. Multi-Core System Software

The multi-core system software will be a multi-threaded sorting algorithm which should be imple-
mented in C using the provided threading library. You are free to implement any parallel sorting
algorithm. This is a non-trivial task since there are many trade-offs in terms of amount of paral-
lelism, locality, and load balancing. A simple approach is to implement a bottom-up hybrid sorting
algorithm. Divide the input array into four blocks. Each core can use the single-threaded sorting
algorithm you used in the baseline to sort its block. Then have core 0 merge the four blocks using
mergesort. You are welcome to consult textbooks or online resources to learn more about different
sorting algorithms, but you should cite these resources. Copying code is not allowed; you should
write it on your own. You will implement the sorting algorithm in app/mtbmark/mtbmark-sort.c.
You cannot change the interface to the mtbmark_sort function!

All four cores always start executing the exact same program at the same reset vector. There is always
one-to-one mapping between cores and threads (i.e., exactly one thread runs on each core), so we use
the terms thread and core interchangeably in this lab. Cores can use two control/status registers to
enable them to execute different code. CSR 0xfc1 contains the total number of cores in the system,
and CSR 0xf14 contains the current core’s unique ID. If there are four cores in the system, then the
core IDs will be 0, 1, 2, and 3.

We provide you a very light-weight threading library, called bthread. We call core 0 the master core
and the other cores the worker cores. Figure 11 illustrates how to use the bthread library to im-
plement a parallel accumulation microbenchmark that makes use of two cores. Before main, each
core calls ece4750_bthread_init; core 0 will perform some initialization and then return from this
function, while cores 1–3 stay in this function executing a worker loop. The master core can spawn
work onto a worker core by using the ece4750_bthread_spawn function, where the first argument is
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Figure 9: MCoreDataCache – The McoreDataCache module as a whole, is hooked up to the test
sources, test sinks, and single-port test memory for unit testing. Each arrow is actually a msg/-
val/rdy port bundle whose direction is the msg/val direction. We omit the details inside MemNet and
CacheNet but show the port names to match the previous diagrams. The ports with inclined names
are the top-level ports that this module exposes.

the ID of the core (thread) we want spawn to, the second argument is the function pointer we want
the worker core to execute, and the final argument is a pointer to a structure that holds the argu-
ments the worker core should use to do the work. The ece4750_bthread_join function will cause
a core to wait for given worker core. We provide you with four multi-threaded microbenchmarks
to show how to use bthread library to parallelize single-threaded microbenchmarks. You may also
want to look at the implementation of each bthread library in app/ece4750/ece4750-bthread.h and
app/ece4750/ece4750-bthread.c. Note that only core 0 can use ece4750_wprintf.

bthread can run multi-threaded programs on a single-core system; ece4750_bthread_spawn directly
executes the given function pointer instead of spawning the work onto a worker thread. bthread can
also run single-threaded programs on a multi-core system by setting the number of workers using
the ece4750_bthread_set_num_workers function.

A simple way to use the bthread library to implement the hybrid sorting algorithm mentioned above
is to divide the input array into four blocks, create four argument structures, use a ece4750_bthread_spawn
to spawn work onto cores 1–3, have core 0 also do some work, then core 0 can use a join to wait for
cores 1–3 to finish, and core 0 can do the final merge.

3.3. Alternative Design Report Section

In the alternative design section of your report you should discuss your ring network including
the specific routing algorithm and arbitration algorithm you implemented. You should discuss the
single-threaded sorting microbenchmark since you will be running that on your multi-core system
and may also be calling it from your multi-threaded sorting microbenchmark. You should also dis-
cuss the multi-threaded sorting microbenchmark in detail.
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Figure 10: MultiCore – The MultiCore module as a whole, is hooked up to a dual-port test memory,
four test sources and four test sinks. Note that to not to make the diagram too crowded, we omit the
proc2mngr and mngr2proc port names both at the boundary of Multicore as well as in the processor.
Each arrow is actually a msg/val/rdy port bundle whose direction is the msg/val direction. The
ports with inclined names are the top-level ports that MultiCore exposes.

4. Testing Strategy

This lab requires an effective testing strategy for both hardware and software. On the hardware side,
you will be using the same Python-based testing framework as in previous labs. On the software
side, you will be using a simple C testing framework.

4.1. Single-Core System Hardware Testing

Start by making sure your multiplier from Lab 1, processor from Lab 2, and cache from Lab 3 are
passing all tests. There is no sense in testing the single-core system if we are not sure the components
are working!

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab1_imul
% pytest ../lab2_proc
% pytest ../lab3_mem

To test the single-core system hardware, we will reuse the assembly tests for a representative subset
of the instructions in Lab 2. We have already done extensive unit testing in the previous labs, so
our goal in this lab is to focus on those tests that might expose bugs in the single-core system. We
recommend testing the following instructions.
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1 typedef struct
2 {
3 int* sum_ptr; // accumulation result
4 int* src; // pointer to src array
5 int first; // first element this core should process
6 int last; // (one past) last element this core should process
7 }
8 arg_t;
9

10 void work( void* arg_vptr )
11 {
12 // Cast void* to argument pointer.
13

14 arg_t* arg_ptr = (arg_t*) arg_vptr;
15

16 // Create local variables for each field of the argument structure.
17

18 int* sum_ptr = arg_ptr->sum_ptr;
19 int* src = arg_ptr->src;
20 int first = arg_ptr->first;
21 int last = arg_ptr->last;
22

23 // Do the actual work
24

25 int sum = 0;
26 for ( int i = first; i < last; i++ )
27 sum += src[i];
28

29 *sum_ptr = sum;
30 }
31

32 int mtbmark_accumulate( int* src, int size )
33 {
34 int block_size = size/2;
35

36 // Create four argument structures that include the array pointers and
37 // what elements each core should process.
38

39 int sum0;
40 int sum1;
41

42 arg_t arg0 = { &sum0, src, 0, size/2 };
43 arg_t arg1 = { &sum1, src, size/2, size };
44

45 // Spawn work onto core 1
46

47 ece4750_bthread_spawn( 1, &work, &arg1 );
48

49 // Have core 0 also do some work.
50

51 work( &arg0 );
52

53 // Wait for core 1
54

55 ece4750_bthread_join(1);
56

57 // Return final sum
58

59 return sum0 + sum1;
60 }

Figure 11: Simple Parallel Accumulate Microbenchmark for Two Cores
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• CSR : csrr, csrw
• Reg-Reg : add, mul
• Reg-Imm : addi
• Memory : lw, sw
• Branch : bne
• Jump : jal
• Any additional mixed instruction tests

You should update SingleCoreSysFL_test.py appropriately with your test cases. You can then use
pytest to run the tests on the FL model and RTL model.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab4_sys/test/SingleCoreSysFL_test.py
% pytest ../lab4_sys/test/SingleCoreSys_test.py

4.2. Single-Core System Software Testing

To test the single-core system software, you will need to use the simple C unit testing framework
provided for you as part of the ece4750 standard C library. You can apply all of the same test-driven
techniques we have used for hardware to test your software including ad-hoc vs. assertion testing,
directed vs. random testing, and black-box vs. white-box testing.

You should always start by making sure your tests pass natively before testing your software on a
FL or RTL simulator. You can compile and run the tests for your single-threaded sorting algorithm
natively using the provided build system.

% cd ${HOME}/ece4750/app/build-native
% make ubmark-sort-test
% ./ubmark-sort-test

Once your tests pass natively, you can also cross-compile and run the tests for your single-threaded
sorting algorithm on the single-core system FL simulator.

% cd ${HOME}/ece4750/app/build
% make ubmark-sort-test
% ../../sim/lab4_sys/sys-sim ./ubmark-sort-test

One your tests pass natively and on the FL simulator, then you can run the tests on the RTL imple-
mentation of the single-core system.

% cd ${HOME}/ece4750/app/build
% make ubmark-sort-test
% ../../sim/lab4_sys/sys-sim --impl base ./ubmark-sort-test

We provide you with a simple basic test for your sorting algorithm which is shown in Figure 12.
A test case is simply a function. Every test case should start with a call to EC4750_CHECK to set the
test case name, and then a series of calls to various ECE4750_CHECK macros to verify properties of
your program. The main function checks command line arguments and then calls every test case
function. You will need to add many more test cases. You must use assertion testing as opposed to
ad-hoc testing (i.e., you must use macros to verify properties, not just print out values and verify
the results manually). You should primarily use directed testing with some limited random testing
(i.e., with calls to ece4750_srand and ece4750_rand. You should use both black-box testing (i.e., test
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1 #include "ece4750.h"
2 #include "ubmark-sort.h"
3

4 void test_case_1_sort_basic()
5 {
6 ECE4750_CHECK( L"test_case_1_sort_basic" );
7

8 int a[] = { 4, 3, 6, 5, };
9 int a_ref[] = { 3, 4, 5, 6, };

10

11 ubmark_sort( a, 4 );
12

13 for ( int i = 0; i < 4; i++ )
14 ECE4750_CHECK_INT_EQ( a[i] , a_ref[i] );
15 }
16

17 int main( int argc, char** argv )
18 {
19 __n = ( argc == 1 ) ? 0 : ece4750_atoi( argv[1] );
20

21 if ( (__n <= 0) || (__n == 1 ) ) test_case_1_sort_basic();
22

23 ece4750_wprintf( L"\n\n" );
24 return ece4750_check_status;
25 }

Figure 12: Example C Test Program for Sorting Algorithm

the ubmark_sort function) along with white-box testing (i.e., test helper functions like a partition
function for quick sort, a merge function for merge sort, or a small sorting function optimized for the
base case in a recursive algorithm).

4.3. Multi-Core System Hardware Testing

You will need to start with unit testing before testing the multi-core system hardware. Write unit tests
for your route unit and switch unit. Once you know these units are functionally correct, write unit
tests for your router. Make sure your test your router with different router IDs! Once you know
your router is functionally correct, write unit tests for the complete ring network. Use a combination
of directed and random testing for your network. Since sometimes it can be hard (especially with
random testing) to determine the exact order that messages will arrive at a stream sink, you may
want to use the ordered=False flag for the sink. This flag means the sink will only check that a
received message is present in the sink by searching all expected messages for a match. Your routing
and arbitration algorithms may not guarantee deadlock freedom, which means you may need to
be careful with tests that rapidly inject many messages!. It is fine for your network not to guarantee
deadlock freedom, because when we use the network in the multi-core system it will only experience
very light loads (i.e., each processor and cache can only have a single request/response in flight at a
time). You can use pytest to run all of the network tests.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab4_sys/test/Net*
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csrr x2, mngr2proc < {1,2,3,4} # init each core’s mngr2proc with different values
csrr x3, mngr2proc < {2,3,4,5} # init each core’s mngr2proc with different values
add x4, x2, x3
csrw proc2mngr, x4 > {3,5,7,9} # verify each core’s proc2mngr with different values

Figure 13: Example of Extended Assembly Syntax for Multi-Core System Testing

Since we do not know the details of your routing and arbitration algorithms, we cannot apply our
own staff tests to your route unit, switch unit, or router. However, we will apply our own staff tests
to your ring network.

After completing the unit testing for the ring network, you can use the tests we provide you to test
the cache network, memory network, and multi-core data cache. It is critical for you to have robust
directed and random testing of your network before testing the cache network, memory network, multi-core
data cache, and the multicore system!

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab4_sys/test/CacheNet_test.py
% pytest ../lab4_sys/test/MemNet_test.py
% pytest ../lab4_sys/test/MultiCoreDataCache_test.py

Once you have passed all of these tests, you are ready to reuse assembly tests from the single-core
testing to test the multi-core system. Again you should test a representative subset of instructions.
When you reuse the single-core tests you will essentially be testing each core executing the same
test in parallel. Note that if two cores load, modify, store different values to the same address
there is no guarantee what the final correct result should be. This is called a “race condition”.
You may need to exclude some of your SW tests from Lab 2 if you cannot guarantee that a LW
always produces the same value regardless of what the other cores are doing. You should update
MultiCoreSysFL_test.py appropriately with your test cases. Feel free to copy tests from the Lab 2
staff tests if you like. You can then use pytest to run the tests on the FL model and RTL model.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab4_sys/test/MultiCoreSysFL_test.py
% pytest ../lab4_sys/test/MultiCoreSys_test.py

Once you have these tests passing, you need to add some specific tests meant meant to specifically
stress the multicore memory system. You will need to make use of a new feature in our assembly
test syntax which enables initializing multiple test sources and sinks. See Figure 13 for an example
of how to write a test where each core does an ADD instruction on different data producing four
different results. In this example, core 0 will add 1 and 2 while core 1 will add 2 and 3. Focus on tests
with different load/store access patterns, but keep in mind that different cores should not load/store
the same word! Again, if two cores load, modify, store different values to the same address there is
no guarantee what the final correct result should be. You should include tests where multiple cores
are accessing different words on the same cache line. Random testing is also great to help stress the
multicore memory system. You can then use pytest to run these new tests on the FL model and RTL
model.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab4_sys/test/MultiCoreSysFL_mem_test.py
% pytest ../lab4_sys/test/MultiCoreSys_mem_test.py
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You should now be able to pass all hardware tests for all labs.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% pytest ../lab1_imul
% pytest ../lab2_proc
% pytest ../lab3_mem
% pytest ../lab4_sys

4.4. Multi-Core System Software Testing

To test the multi-core system software, you should appply the same strategy you used for testing
the single-core system software. As always, make sure your tests pass natively before testing your
software on a FL or RTL simulator. You can compile and run the tests for your multi-threaded sorting
algorithm natively using the provided build system.

% cd ${HOME}/ece4750/app/build-native
% make mtbmark-sort-test
% ./mtbmark-sort-test

Once your tests pass natively, you can also cross-compile and run the tests for your multi-threaded
sorting algorithm on the single-core system FL simulator.

% cd ${HOME}/ece4750/app/build
% make mtbmark-sort-test
% ../../sim/lab4_sys/sys-sim ./mtbmark-sort-test

One your tests pass natively and on the single-core system FL simulator, then you can run the tests
on multi-core system FL simulator.

% cd ${HOME}/ece4750/app/build
% make mtbmark-sort-test
% ../../sim/lab4_sys/sys-sim --impl mcore-fl ./mtbmark-sort-test

Finally, you can run the tests on the the RTL implementation of the multi-core system.

% cd ${HOME}/ece4750/app/build
% make mtbmark-sort-test
% ../../sim/lab4_sys/sys-sim --impl alt ./mtbmark-sort-test

4.5. Testing Strategy Report Section

In the testing strategy section of your report, you should discuss your unit testing for the route unit,
switch unit, network router, and ring network including both your directed tests, random tests, and
delay testing. You should discuss which assembly tests you brought over from Lab 2 to test your
single-core and multi-core systems, and you should discuss the new assembly tests you wrote to
specifically stress the multi-core memory system. You should disscuss your software testing strategy
for both the single-threaded and multi-threaded sorting microbenchmarks. Feel free to feature and
subtle bugs that did not arise until you composed the various subsystems!
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5. Evaluation

We provide you with four single-threaded microbenchmarks and four multi-threaded bencmarks
that illustrate different trade-offs in terms of arithmetic intensity, data access regularity, and control
flow regularity. Your sorting algorithm makes a fifth microbenchmark.

5.1. Single-Core System Evaluation

Before you you do any kind of evaluation of your single-core system, you should consider each of
the following questions:

• Has all of the code from previous lab revisions has been prqoperly merged into your main branch?

• Does your alternative design for Lab 1 passes all of the RTL tests?

• Does your alternative design for Lab 2 passes all of the RTL tests?

• Does your alternative design for Lab 3 passes all of the RTL tests?

• Have you copied over assembly tests from Lab 2 to test your single-core system by modifying
SingleCoreSysFL_test.py? The tests you are provivded are just a start and are not sufficient.
Did you look at the line traces to confirm your single-core system is behaving as expected? It is
not enough just to pass the tests; you need to also look at the line traces.

• Have you successfully run the software tests for the vvadd, mfilt, cmult, and bsearch single-threaded
microbenchmarks on the single-core system RTL?

• Have you thoroughly tested and helper functions called by your single-threaded sorting mi-
crobenchmark by adding many more tests to ubmark-sort-test.c and then running these tests
on the functional-level model and single-core system RTL?

• Have you thoroughly tested your single-threaded sorting microbenchmark by adding many more
tests to ubmark-sort-test.c and then running these tests on the functional-level model and
single-core system RTL? The tests you are provivded are just a start and are not sufficient.

ONLY after you are able to answer “yes” to each of the above questions should you start your eval-
uation of the single-core system.

We provide you with four single-threaded microbenchmarks: vvadd, mfilt, cmult, and bsearch, whose
assembly sequences have been studied in Lab 2. Your sorting algorithm makes a fifth microbench-
mark. All single-threaded microbenchmarks are in the app/ubmark directory with their C source
code, test programs, evaluation programs, and dataset files. Figure 14 shows the evaluation program
for the single-threaded vvadd microbenchmark. We use calls to ece4750_stats_on and ece4750_stats_off
to indicate the region of interest (ROI) where we want to collect statistics. Even though this is an eval-
uation program, we still verify that the results are correct.

You should always start by making sure your evaluation program works natively before running
the evaluation program on a FL or RTL simulator. You can compile and run the evaluation for the
single-threaded vector-vector add microbenchmark natively using the provided build system.

% cd ${HOME}/ece4750/app/build-native
% make ubmark-vvadd-eval
% ./ubmark-vvadd-eval

Once your evaluation works natively, you can also cross-compile and run the evaluation on the
single-core system FL simulator.
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1 #include "ece4750.h"
2 #include "ubmark-vvadd.h"
3 #include "ubmark-vvadd.dat"
4

5 int main( void )
6 {
7 // Allocate destination array for results
8

9 int* dest = ece4750_malloc( eval_size * (int)sizeof(int) );
10

11 // Run the evaluation
12

13 ece4750_stats_on();
14 ubmark_vvadd( dest, eval_src0, eval_src1, eval_size );
15 ece4750_stats_off();
16

17 // Verify the results
18

19 for ( int i = 0; i < eval_size; i++ ) {
20 if ( dest[i] != eval_ref[i] ) {
21 ece4750_wprintf( L"\n FAILED: dest[%d] != eval_ref[%d] (%d != %d)\n\n",
22 i, i, dest[i], eval_ref[i] );
23 ece4750_exit(1);
24 }
25 }
26

27 // Free destination array
28

29 ece4750_free(dest);
30

31 // Check for no memory leaks
32

33 if ( ece4750_get_heap_usage() != 0 ) {
34 ece4750_wprintf( L"\n FAILED: memory leak of %d bytes!\n\n",
35 ece4750_get_heap_usage() );
36 ece4750_exit(1);
37 }
38

39 // Otherwise we passed
40

41 ece4750_wprintf( L"\n **PASSED** \n\n" );
42

43 return 0;
44 }

Figure 14: Example C Evaluation Program for Vector-Vector Add

% cd ${HOME}/ece4750/app/build
% make ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim ./ubmark-vvadd-eval

One your evaluation works natively and on the FL simulator, then you can run the evaluation on the
RTL implementation of the single-core system.

% cd ${HOME}/ece4750/app/build
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% make ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --impl base ./ubmark-vvadd-eval

You can use the –stats option to print out the number of cycles, number of instructions, cycles/in-
struction, number of cache accesses, and cache miss rate. You can use the –trace to print out a line
trace. Consider writing long line traces to a file to make them easier to analyze.

% cd ${HOME}/ece4750/app/build
% make ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --stats --impl base ./ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --trace --impl base ./ubmark-vvadd-eval > ./trace.txt

5.2. Multi-Core System Evaluation

Before you you do any kind of evaluation of your multi-core system, you should consider each of
the following questions:

• Have you considered all of the questions in the previous section?

• Have you added your own directed/random and value/delay testing for the route unit, switch
unit, network router, and ring network? The tests you are provivded are just a start and are
not sufficient. Did you look at the line traces to confirm your multi-core system is behaving as
expected? It is not enough just to pass the tests; you need to also look at the line traces.

• Are you passing all of the provided cache network, memory network, and multi-core data cache
tests?

• Have you copied over assembly tests from Lab 2 to test your multi-core system by modifying
MultiCoreSysFL_test.py? The tests you are provivded are just a start and are not sufficient. Did
you look at the line traces to confirm your multi-core system is behaving as expected? It is not
enough just to pass the tests; you need to also look at the line traces.

• Have you created new assembly tests from scratch to specifically test your multi-core system with
many loads and stores by modifying MultiCoreSysFL_mem_test.py? The tests you are provivded
are just a start and are not sufficient. Did you look at the line traces to confirm your multi-core
system is behaving as expected? It is not enough just to pass the tests; you need to also look at
the line traces.

• Have you successfully run the software tests for the vvadd, mfilt, cmult, and bsearch single-threaded
microbenchmarks on the multi-core system RTL?

• Have you successfully run the software tests for the vvadd, mfilt, cmult, and bsearch multi-threaded
microbenchmarks on the multi-core system RTL?

• Have you thoroughly tested and helper functions called by your multi-threaded sorting mi-
crobenchmark by adding many more tests to mtmark-sort-test.c and then running these tests
on the functional-level model and single-core system RTL?

• Have you thoroughly tested your multi-threaded sorting microbenchmark by adding many more
tests to mtbmark-sort-test.c and then running these tests on the functional-level model and
single-core system RTL? The tests you are provivded are just a start and are not sufficient.

ONLY after you are able to answer “yes” to each of the above questions should you start your eval-
uation of the single-core system.
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We provide you with four multi-threaded microbenchmarks which are the parallel versions of the
single-threaded microbenchmarks: vvadd, mfilt, cmult, and bsearch. Your sorting algorithm makes a
fifth microbenchmark. All single-threaded microbenchmarks are in the app/mtbmark directory with
their C source code, test programs, and evaluation programs. We use the same dataset files from the
single-threaded microbenchmarks. All of these multi-threaded microbenchmarks statically partition
the input for the number of cores (threads) that are available in the system. All of these multi-
threaded microbenchmarks support running on a single-core system and also support using a single
worker.

You should always start by making sure your evaluation program works natively before running the
evaluation program on a FL or RTL simulator. You can compile and run the evaluation for multi-
threaded vector-vector add natively using the provided build system.

% cd ${HOME}/ece4750/app/build-native
% make mtbmark-vvadd-eval
% ./mtbmark-vvadd-eval

Once your evaluation works natively, you can also cross-compile and run the evaluation on the
single-core system FL simulator.

% cd ${HOME}/ece4750/app/build
% make mtbmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim ./mtbmark-vvadd-eval

One your tests pass natively and on the single-core system FL simulator, then you can run the tests
on multi-core system FL simulator.

% cd ${HOME}/ece4750/app/build
% make mtbmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --impl mcore-fl ./mtbmark-vvadd-eval

One your evaluation works natively and on the FL simulator, then you can run the evaluation on the
RTL implementation of the multi-core system.

% cd ${HOME}/ece4750/app/build
% make ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --impl alt ./ubmark-vvadd-eval

Once all of this works you can use the –stats option to print out the number of cycles, number of
instructions, cycles/instruction, number of cache accesses, and cache miss rate.

5.3. Comparative Evaluation

Consider using the following five experiments:

• Run the single-threaded sorting microbenchmark on the single-core system to measure the base-
line design performance

• Run the single-threaded sorting microbenchmark on the multi-core system to measure the hard-
ware overhead of the multi-core system

• Run the multi-threaded sorting microbenchmark on the single-core system to measure the soft-
ware overhead of a multi-threaded program
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• Run the multi-threaded sorting microbenchmark on the multi-core system using a single worker
to measure the software and hardware overhead of a multi-threaded program

• Run the multi-threaded sorting microbenchmark on the multi-core system using all four workers
to measure the alternative design performance

Here are the commands that implement the above five experiments.

% cd ${HOME}/ece4750/app/build
% make ubmark-vvadd-eval
% make mtbmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --stats --impl base ./ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --stats --impl alt ./ubmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --stats --impl base ./mtbmark-vvadd-eval
% ../../sim/lab4_sys/sys-sim --stats --impl alt ./mtbmark-vvadd-eval 1
% ../../sim/lab4_sys/sys-sim --stats --impl alt ./mtbmark-vvadd-eval

By default, multi-threaded evaluation programs use as many workers as cores in the system. To
indicate we only want to use a single worker we pass in 1 as a command line argument to the
multi-threaded evaluation program. Run these five experiments for all five microbenchmarks for a
total of 25 experiments. For each experiment record the execution time in cycles and the total CPI.
Create two bar plots; the first bar plot should plot the speedup for each experiment normalized to
the baseline results; the second bar plot should plot the CPI for each experiment. Group the bar plots
by microbenchmark. This data will enable quantifying the software and hardware overheads of the
multi-core system, and ultimately whether or not the complete alternative design is able to overcome
these overheads to enable speedup over the baseline design.

6. Bonus Time! Hardware and Software Optimizations

Advanced students might want to consider modifying the software and/or hardware to improve
the performance of their sorting microbenchmarks. A small bonus will be given to the fastest few
designs. We will run your sorting microbenchmark on your multicore system using one or more of
our own private datasets. These datasets will be similar in size to the dataset we give you, but may
not necessarily have exactly 100 elements. Note that students should only attempt improving the
software and/or hardware once everything is completely working and they have finished a draft of
the lab report. The rest of this section includes some ideas on how you might want to improve your
design.

You will quickly find that the performance of your single-core system and even the multi-core system
is limited by the hit latency of the cache you designed in Lab 3. While we could move to a more
aggressive pipelined cache microarchitecture, you can achieve much of the same benefit by simply
merging states in the FSM control unit. Ideally, you would merge enough states to enable a single-
cycle hit latency for reads (i.e., a single state for read hits) and a sustained throughput of one read hit
per cycle. This requires performing tag check and data access in parallel, and carefully handling the
val/rdy signals for the cache request and response interfaces. Writes can potentially use two states to
do tag check and data access in sequence, although single-cycle hit latency for writes is still possible
if the cache response is sent back in the first state. To enable full throughput, the cache should only go
into the WAIT state if cache response interface is not ready, and if there is a new valid cache request
then the cache should avoid going back into the IDLE state and instead go straight to the tag check
state. performance. Reducing the read hit latency is the most critical since this would improve the
performance of instruction fetch in your processor.
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You might also notice that you are wasting some cycles due to control hazards. Our sorting mi-
crobenchmark will have one or more loops, and the pipelined processor will almost always mispre-
dict the backwards branch used in these loops. Adding a simple branch target buffer (BTB) in the
F stage could improve the performance of the provided microbenchmarks, and the sorting imple-
mentation, by effectively eliminating most squashes due to the backwards branch used in loops. A
simple, yet effective approach would be to include a four entry BTB in the F stage. Each entry would
include a valid bit, the PC of the branch, and the target address for the branch when it is taken. In
the F stage, your processor would need to search the BTB for the current PC. If there is a hit, then
the F stage can use the corresponding target address in the BTB. If there is a miss, then the F stage
can simply use PC+4. If a branch is taken, then in the X stage we would need to write the BTB with
the corresponding PC of the branch and target address. More complicated schemes are certainly
possible.

The above optimizations will improve the performance of both the single-core and multi-core system.
You may also want to experiment with the ring network. Consider using a more optimal network
routing algorithm and/or using a more fair arbitration scheme. You will want to think critically
about whether or not a bus or a ring makes the most sense for data cache network, and then run
some experiments to see which achieves the best performance for a certain network composition.
Some extra performance hooks may help you understand the injection rate/latency in a realistic
multi-core system context. If you choose to use a bus, then should probably justify why a bus will
not significantly impact the cycle time.

Finally, do not forget the importance of optimizing your software! Not all sorting algorithms in the
same complexity class are equivalent. The constant factors and trailing terms can significantly impact
real system performance. Experiment with different algorithms in the same complexity class. Use a
hybrid sort to optimize the base case in a recursive algorithm. Try to optimize your C code to avoid
unnecessary memory accesses or to manually unroll loops. You may also want to experiment with
different ways to parallelize your sorting algorithm.
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